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A Cycle for Organic Nitrile Synthesis via Dinitrogen Cleavage
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Six-electron reductive cleavage of the Molecule by soluble ~ Scheme 1. A Synthetic Cycle that Incorporates N into Organic
metal complexes has been observed for a handful of early transition-Nitriles®

element systems to provide well-defined terminal or bridged nitri-
dometal product$.® We sought to couple dinitrogen cleavage
chemistry with N-atom transfer reactivity!® keeping in mind the
criterion that N-atom transfer should return the metal fragment in
high yield and in a form that is suitable for subsequent, repeated
dinitrogen cleavage. Dinitrogen cleavage by the three-coordinate
molybdenum(lll) complex Mo(NfBuU]Ar)s (1) provides 2 equiv
of the terminal nitrido complex &Mo(N[t-Bu]Ar)s (2) in es-
sentially quantitative yield2113 Others have explored the use of
nitrido 2 as an N-atom source in the synthesis of organonitrogen
compounds upon treatment with TFAA ¢EFCO)0), a regimen
that did not satisfy the criterion articulated abd¢&Ve have de-
veloped a scheme for N-atom incorporation fr@into organic
nitriles, a scheme that until now has been entered into only via
independent synthesid®Herein we describe N-atom transfer from
2 into organic nitriles via a Lewis-acid induced reaction that returns
molybdenum in the form of a chloromolybdenum(IV) comglex
which in turn is reductively recyclé8to dinitrogen-splitting com-
plex 1. Organic nitriles are useful nitrogen-containing building
blocks for synthesi&2° and the present methodology may find
application in théN-labeling of organic nitrile¥ and compounds
derived therefrom.

The terminal nitride complex2, is most conveniently prepared
by stirring orange-red solutions dfwith purified NaH223 under
an N, atmosphere. This method, a modification of published
procedures!~1324requires little purification of the nitride product,
as filtration of the reaction mixture followed by removal of solvent
affords2 as a golden-yellow powder. Nitrido compl&has proven
to be a reluctant nucleophile. This is attributed, at least in part, to
steric crowding of the nitrido functionality by three proximatt-
butyl residues. Accordingly?2 is not acylated by acid chlorides in
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[MesSi(py)][OTf]; (i) (i-PrsSiOTf, MeC(O)CI. Yields of RCN were
determined byH NMR versus an internal standard. The isolated yields of
7 shown were obtained from reactions using SnCl

manipulated material. Accordingly, treatment of in situ generated
5-Ph with MgSiOTf cleanly afforded a trimethylsiloxy-substituted
ketimide, Ph(MeSiO)CNMo(N[t-Bu]Ar)s (6-Ph, 77%). Crystal-
lographic data (Figure 1) obtained from single crystals of the dark
green6-Ph show a short MeN single bond of 1.828(2) A, an

the absence of additives, even upon mild heating. On the other handN=C bond of 1.280(2) A, and a nearly linear M&—C angle of

nitrido 2 does take part in reactions with strong electrophiles.
Recently described was the reaction2ofvith Me;SiOTf leading
rapidly to the silylimido salt [MgSiNMo(N[t-Bu]Ar)3][OTf] ( 3).13
We recognized the latent potential of the §8& group as a Lewis
acid capable of promoting a reaction between acid chlorides and
225727 Indeed, in the presence of a catalytic amount of pyridine,
mixtures of3 and PhC(O)CI are converted to benzoylimido salt,
[PhC(O)NMo(NE-Bu]Ar)3][OTf] (4-Ph, 75%). This transformation
creates a new NC bond while introducing a carbonyl functional
group into the molecule that is earmarked for synthetic elaboration.
Reduction of4-Ph by magnesium anthracene produces the purple
[Mg(THF),][PhC(O)NMo(N[t-Bu]Ar)s]. (5-Ph), which can be
isolated from the reaction mixture as a crude material (83¥h
participates in reactions with TFAA or PhC(O)OTf to eliminate
PhCN while forming molybdenum(1V) trifluoroacetatesGCO,-
Mo(N[t-Bu]Ar)3, or the structurally characterized benzoate, PRCO
Mo(N[t-Bu]Ar)z.28 However the molybdenum-containing products
resulting from reactions 06-Ph could not be isolated as pure
materials, therefore we sought to convé&Ph into an easily
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171.0(1) for the ketimide moiety. The three anilide ligands, which
are equivalent in solution, are found in an “ugown—sideways”
conformation in the solid stafé.Computational studies d-Ph
reveal that the HOMO is the back-bond between theetal center
and the ketimide K-C z* orbital. The LUMO is nonbonding and
has the appearance of a drbital 2

Complexes of the formula Ph(X)CNMo(NBuUJAr); (X = O,-
CPh, SGFs) are known to fragment giving (X)Mo(X{Bu]Ar)s and
PhCN28 We therefore sought out reactions that would release PhCN
from 6-Ph. Both ZnCJ and SnCJ were found to react witB-Ph to
evolve PhCN, with CIMo(NfBuU]Ar)s (7)172° as the sole molyb-
denum-containing product. The reaction between $a6tl6-Ph
proceeds ovel h producing7 (93%) and PhCN (97%); the tin
byproducts are removed by filtering the reaction mixture. The
reaction between Zngand6-Ph require 3 h toyield PhCN (98%)
and7 (20%). The isolated yield o7 is low because the soluble
zinc byproducts must be separated by crystallization. Fhe
labeled, Ph(MgSiO)CNMo(N[t-BuJAr); (*°N NMR: 6 = 404
ppm) was prepared, and its reaction with Zn@has assayed by
15N NMR. In the crude reaction mixture, only one resonance was
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Figure 1. The molecular structure @&Ph is shown with thermal ellipsoids
at the 50% probability level.

observed over a spectral width of-Q000 ppm corresponding to
PhCSN (260 ppm)?t It is noteworthy that ZnGl and SnCl
efficiently form PhCN and a single molybdenum-containing product
from 6-Ph when other Lewis acids do not behave similarly.
Tolerance to the dmolybdenum center may be essential to avoid
redox reactions; Zn(ll) and Sn(ll) salts are non-oxidizing Lewis
acids31-32|nterestingly, Zn4 and Zn(OTf} both failed to react with
6-Ph, possibly implying that formation of a strong M€I bond is
important to obtain favorable thermodynamics for nitrile loss. We
favor a mechanism in which the Lewis acid binds to the trimeth-

A key feature of the cycle in Scheme 1 is the set of three
acylation strategies that employ either Lewis acid/Lewis base
combinations or a sterically hindered Lewis acid to promote the
reaction of2 with acid chlorides. The other essential feature is the
use of SnGJ and ZnC} as both Lewis acids and chloride donors.
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