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Six-electron reductive cleavage of the N2 molecule by soluble
metal complexes has been observed for a handful of early transition-
element systems to provide well-defined terminal or bridged nitri-
dometal products.1-9 We sought to couple dinitrogen cleavage
chemistry with N-atom transfer reactivity,4,10 keeping in mind the
criterion that N-atom transfer should return the metal fragment in
high yield and in a form that is suitable for subsequent, repeated
dinitrogen cleavage. Dinitrogen cleavage by the three-coordinate
molybdenum(III) complex Mo(N[t-Bu]Ar)3 (1) provides 2 equiv
of the terminal nitrido complex NtMo(N[t-Bu]Ar)3 (2) in es-
sentially quantitative yield.1,2,11-13 Others have explored the use of
nitrido 2 as an N-atom source in the synthesis of organonitrogen
compounds upon treatment with TFAA ((F3CCO)2O), a regimen
that did not satisfy the criterion articulated above.14 We have de-
veloped a scheme for N-atom incorporation from2 into organic
nitriles, a scheme that until now has been entered into only via
independent synthesis.15,16Herein we describe N-atom transfer from
2 into organic nitriles via a Lewis-acid induced reaction that returns
molybdenum in the form of a chloromolybdenum(IV) complex17

which in turn is reductively recycled18 to dinitrogen-splitting com-
plex 1. Organic nitriles are useful nitrogen-containing building
blocks for synthesis,19,20 and the present methodology may find
application in the15N-labeling of organic nitriles21 and compounds
derived therefrom.

The terminal nitride complex,2, is most conveniently prepared
by stirring orange-red solutions of1 with purified NaH22,23 under
an N2 atmosphere. This method, a modification of published
procedures,11-13,24requires little purification of the nitride product,
as filtration of the reaction mixture followed by removal of solvent
affords2 as a golden-yellow powder. Nitrido complex2 has proven
to be a reluctant nucleophile. This is attributed, at least in part, to
steric crowding of the nitrido functionality by three proximaltert-
butyl residues. Accordingly,2 is not acylated by acid chlorides in
the absence of additives, even upon mild heating. On the other hand,
nitrido 2 does take part in reactions with strong electrophiles.
Recently described was the reaction of2 with Me3SiOTf leading
rapidly to the silylimido salt [Me3SiNMo(N[t-Bu]Ar)3][OTf] ( 3).13

We recognized the latent potential of the Me3Si+ group as a Lewis
acid capable of promoting a reaction between acid chlorides and
2.25-27 Indeed, in the presence of a catalytic amount of pyridine,
mixtures of3 and PhC(O)Cl are converted to benzoylimido salt,
[PhC(O)NMo(N[t-Bu]Ar)3][OTf] ( 4-Ph, 75%). This transformation
creates a new N-C bond while introducing a carbonyl functional
group into the molecule that is earmarked for synthetic elaboration.

Reduction of4-Ph by magnesium anthracene produces the purple
[Mg(THF)2][PhC(O)NMo(N[t-Bu]Ar)3]2 (5-Ph), which can be
isolated from the reaction mixture as a crude material (82%).5-Ph
participates in reactions with TFAA or PhC(O)OTf to eliminate
PhCN while forming molybdenum(IV) trifluoroacetate, F3CCO2-
Mo(N[t-Bu]Ar)3, or the structurally characterized benzoate, PhCO2-
Mo(N[t-Bu]Ar)3.28 However the molybdenum-containing products
resulting from reactions of5-Ph could not be isolated as pure
materials, therefore we sought to convert5-Ph into an easily

manipulated material. Accordingly, treatment of in situ generated
5-Ph with Me3SiOTf cleanly afforded a trimethylsiloxy-substituted
ketimide, Ph(Me3SiO)CNMo(N[t-Bu]Ar)3 (6-Ph, 77%). Crystal-
lographic data (Figure 1) obtained from single crystals of the dark
green6-Ph show a short Mo-N single bond of 1.828(2) Å, an
NdC bond of 1.280(2) Å, and a nearly linear Mo-N-C angle of
171.0(1)° for the ketimide moiety. The three anilide ligands, which
are equivalent in solution, are found in an “up-down-sideways”
conformation in the solid state.15 Computational studies of6-Ph
reveal that the HOMO is the back-bond between the d2 metal center
and the ketimide NdC π* orbital. The LUMO is nonbonding and
has the appearance of a dz2 orbital.29

Complexes of the formula Ph(X)CNMo(N[t-Bu]Ar)3 (X ) O2-
CPh, SC6F5) are known to fragment giving (X)Mo(N[t-Bu]Ar)3 and
PhCN.28 We therefore sought out reactions that would release PhCN
from 6-Ph. Both ZnCl2 and SnCl2 were found to react with6-Ph to
evolve PhCN, with ClMo(N[t-Bu]Ar)3 (7)17,30 as the sole molyb-
denum-containing product. The reaction between SnCl2 and6-Ph
proceeds over 1 h producing7 (93%) and PhCN (97%); the tin
byproducts are removed by filtering the reaction mixture. The
reaction between ZnCl2 and6-Ph requires 3 h toyield PhCN (98%)
and 7 (20%). The isolated yield of7 is low because the soluble
zinc byproducts must be separated by crystallization. The15N-
labeled, Ph(Me3SiO)C15NMo(N[t-Bu]Ar)3 (15N NMR: δ ) 404
ppm) was prepared, and its reaction with ZnCl2 was assayed by
15N NMR. In the crude reaction mixture, only one resonance was

Scheme 1. A Synthetic Cycle that Incorporates N2 into Organic
Nitrilesa

a (i) (a) Me3SiOTf (b) 1.25 PhC(O)Cl, 0.2 py; (ii) 1.25t-BuC(O)Cl,
[Me3Si(py)][OTf]; (iii) ( i-Pr)3SiOTf, MeC(O)Cl. Yields of RCN were
determined by1H NMR versus an internal standard. The isolated yields of
7 shown were obtained from reactions using SnCl2.
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observed over a spectral width of 0-1000 ppm corresponding to
PhC15N (260 ppm).21 It is noteworthy that ZnCl2 and SnCl2
efficiently form PhCN and a single molybdenum-containing product
from 6-Ph when other Lewis acids do not behave similarly.
Tolerance to the d2 molybdenum center may be essential to avoid
redox reactions; Zn(II) and Sn(II) salts are non-oxidizing Lewis
acids.31,32Interestingly, ZnI2 and Zn(OTf)2 both failed to react with
6-Ph, possibly implying that formation of a strong Mo-Cl bond is
important to obtain favorable thermodynamics for nitrile loss. We
favor a mechanism in which the Lewis acid binds to the trimeth-
ylsiloxy oxygen to form an intermediate that undergoes subsequent
unimolecular fragmentation. This may occur via a six-membered
transition state in which chloride bridges between Zn or Sn and
Mo. Such a mechanism is analogous to the Lewis-acid induced
decomposition of organic hydroximines to nitriles.33 The reactions
between6-Ph and ZnCl2 or SnCl2 differ in the required stoichi-
ometry. In the presence of 0.58 equiv SnCl2 6-Ph is completely
consumed, whereas in the presence of 0.60 equiv ZnCl2 only 60%
of 6-Ph is consumed. This observation implies that the Zn- and
Sn-containing byproducts (possibly [ZnCl(OSiMe3)(THF)]2 34 and
Sn(OSiMe3)2

35) are expected to have different empirical formulas.
Reactions between3 and aliphatic acid chlorides did not produce

reasonable yields of corresponding acylimido species. However,
treatment of a mixture of2 andt-BuC(O)Cl with [Me3Si(py)][OTf]
affords [t-BuC(O)NMo(N[t-Bu]Ar)3][OTf] ( 4-t-Bu, 64%).36,37Treat-
ment of4-t-Bu with magnesium anthracene followed by Me3SiOTf
affordst-Bu(Me3SiO)CNMo(N[t-Bu]Ar)3 (6-t-Bu, 46%). Treatment
of blue 6-t-Bu with SnCl2 cleanly produces both7 (88%) and
t-BuCN (99%). Similarly, ZnCl2 and 6-t-Bu react to yield7 and
t-BuCN (99%).

Use of the Lewis acid/Lewis base combination of Me3SiOTf and
pyridine turned out to be ineffective for synthesizing [MeC(O)-
NMo(N[t-Bu]Ar)3][OTf] ( 4-Me). To obtain4-Me we adopted a new
acylation strategy, adding MeC(O)Cl to a mixture of (i-Pr)3SiOTf
and2.25-27 This procedure is possible because (i-Pr)3SiOTf itself
does not react with2 (as assessed by1H NMR), and the isolated
yield of 4-Me (92%) attests to the utility of this procedure.
Treatment of4-Me with magnesium anthracence followed by the
addition of Me3SiOTf yields violet Me(Me3SiO)CNMo(N[t-Bu]-
Ar)3 (6-Me, 83%). Treatment of6-Me with SnCl2 cleanly produces
both7 (71%) and MeCN (99%). Similarly, treatment of6-Me with
ZnCl2 yields 7 and MeCN (99%).

The only molybdenum-containing product generated by the
reactions of4 with either SnCl2 or ZnCl2, 7, is conveniently reduced
by Mg0 to 1 (74%). In this manner the precursor to2 is regenerated,
completing a synthetic cycle that progresses through three different
nitrogen-containing triple bonds: 0.5 NtN f NtMo f NtCR.

A key feature of the cycle in Scheme 1 is the set of three
acylation strategies that employ either Lewis acid/Lewis base
combinations or a sterically hindered Lewis acid to promote the
reaction of2 with acid chlorides. The other essential feature is the
use of SnCl2 and ZnCl2 as both Lewis acids and chloride donors.
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Figure 1. The molecular structure of6-Ph is shown with thermal ellipsoids
at the 50% probability level.
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